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Intended learning outcomes
 In this chapter, we apply the methods we have learned to some of the materials with which an 

engineer must work. 

 In the first part of the chapter, we consider conducting materials by describing the parameters 

that relate current to an applied electric field. This leads to a general definition of Ohm’s law.

 We then develop methods of evaluating resistances of conductors in a few simple geometric 

forms. Conditions that must be met at a conducting boundary are obtained next, and this 

knowledge leads to a discussion of the method of images. 

 The properties of semiconductors are described to conclude the discussion of conducting media.
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Current and Current Density
Electric charges in motion constitute a current. 

The unit of current is the ampere (A),

It is defined as a rate of movement of charge passing a given reference point (or 
crossing a given reference plane) of one coulomb per second.

Current is symbolized by I , and given by
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• Current is usually defined as the motion of positive charges, even though

conduction in metals takes place through the motion of electrons.

(1)



Current and Current Density
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Current flow inside conductor



Current and Current Density
In field theory, we are usually interested in events occurring at a point rather than within

a large region, and we find the concept of current density, measured in amperes per

square meter (A/m2), more useful. Current density is a vector represented by J.

The increment of current I crossing an incremental surface S normal to the current 
density is

and in the case where the current density is not perpendicular to the surface,

Total current is obtained by integrating,
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(2)



Current and Current Density
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Current density may be related to the velocity of volume charge density at a point.

Consider the element of charge ∆𝑄 = 𝜌𝑣∆𝑣 = 𝜌𝑣∆𝑆∆𝐿, as shown in Figure 5.1a.



Current and Current Density
To simplify the explanation, assume that the charge element is oriented to the x-

axis and has only an x component of velocity ∆𝑄 = 𝜌𝑣∆𝑆∆𝑥.

If the charge element ∆𝑄 moved a distance ∆𝑥 in the time interval ∆𝑡, as

indicated in Figure 5.1b, the resulting current will be
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Where 𝑣𝑥 represents the x component of the velocity v. In terms of current density,

we find

and in general (3)



Current and Current Density
This last result shows clearly that charge in motion constitutes a current. We call 

this type of current a convection current.

Note that the convection current density is related linearly to charge density as 

well as to velocity. 

The mass rate of flow of cars (cars per square foot per second) in the Holland 

Tunnel could be increased either by raising the density of cars per cubic foot, or 

by going to higher speeds, if the drivers were capable of doing so.
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Current and Current Density

There are 2 types of current:

1) Convection current

 generated by actual movement of electrically charged matter; does NOT obey Ohm’s law

 E.g. movement of charged particles in cathode ray tube

2) Conduction current 

 atoms of conducting material do NOT move; obeys Ohm’s law

 E.g. movement of electrons in a metal wire
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Current and Current Density
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Current and Current Density
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Continuity of Current
 the continuity equation of current is introduced from the concept of “conservation of charge”.

 The principle of conservation of charge states simply that “charges can be neither created nor 
destroyed”, although equal amounts of positive and negative charge may be simultaneously created, 
obtained by separation, or lost by recombination.

 when we consider any region bounded by a closed surface. The current through the closed surface 
is
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 This outward flow of positive charge must be balanced by a decrease of positive charge within the 

closed surface and the principle of conservation of charge requires

If the charge inside the closed surface is Qi , then the rate of decrease is−dQi /dt

(4)



Continuity of Current
Equation (4) is the integral form of the continuity equation; the differential, or point form, is 

obtained by using the divergence theorem:
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from which we have our point form of the continuity equation,

We next represent the enclosed charge Qi by the volume integral of the charge density,

(5)



Continuity of Current
Remembering the physical interpretation of divergence, this equation indicates

that the current, or charge per second, diverging from a small volume per unit

volume is equal to the time rate of decrease of charge per unit volume at every

point.
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Continuity of Current
Ex 1: Assume that an electron beam carries a total current of -500 µA in the  𝑎𝑧direction and has a 

current density 𝐽𝑧that is not a function of r or ∅ in the region 0 ≤ 𝑟 < 10−4𝑚 and zero for 𝑟
> 10−4𝑚.

If the electron velocity is given by 𝑉𝑧 = 8 × 10
7𝑧
𝑚

𝑠
, calculate 𝜌𝑣 at r = 0 and (a) z = 1 mm; (b) z = 2 

cm; (c) z = 1 m.

Sol.
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and

The above relations will be used to calculate 𝜌𝑣 where v and I are known.

Given that 𝐽 = 0 for 𝑟 > 10−4𝑚, and the current density is directed parallel to the z-direction.

Therefore, the cross-section area for the current is 𝑆𝑥𝑦 = 𝜋(10
−4)2 m2.

𝐽𝑧 =
𝐼

𝑆𝑥𝑦
= −

500×10−6

𝜋×10−8
A/m2



Continuity of Current
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𝐽𝑧 = 𝜌𝑣𝑉𝑧 , 𝑉𝑧= 8x107z  

∴ −
500 × 10−6

𝜋 × 10−8
= 𝜌𝑣 × 8 × 107z

∴ 𝜌𝑣 = −
0.005

8𝜋𝑧
c/m3

For (a) z = 1 mm; ∴ 𝜌𝑣 = -0.1989 c/m3

For (b) z = 2 cm; ∴ 𝜌𝑣 = -9.95x10-3 c/m3

For (c) z = 1 m. ∴ 𝜌𝑣 = -0.1989x10-3 c/m3



Quantum Theory
Physicists describe the behavior of the electrons surrounding the positive atomic 

nucleus in terms of the total energy of the electron with respect to a zero 

reference level for an electron at an infinite distance from the nucleus. The total 

energy is the sum of the kinetic and potential energies, and because energy must 

be given to an electron to pull it away from the nucleus, the energy of every 

electron in the atom is a negative quantity.
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Quantum Theory
According to the quantum theory, only certain discrete energy levels, or energy states,

are permissible in a given atom, and an electron must therefore absorb or emit discrete

amounts of energy, or quanta, in passing from one level to another.

In a crystalline solid, atoms are packed closely together, many more electrons are

present, and many more permissible energy levels are available because of the

interaction forces between adjacent atoms. We find that the allowed energies of electrons

are grouped into broad ranges, or “bands,” each band consisting of very numerous,

closely spaced, discrete levels.

At a temperature of absolute zero, the normal solid also has every level occupied,

starting with the lowest and proceeding in order until all the electrons are located. The

electrons with the highest (least negative) energy levels, the valence electrons, are

located in the valence band.
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Quantum Theory
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Quantum Theory
In good conductors, if an external field is applied, additional kinetic energy are given to the

valence electrons, then the valence band merges smoothly into a conduction band, resulting

in an electron flow.

In good insulators, because there is a big energy gab, the electron cannot accept additional

energy in small amounts. This band structure is indicated in Figure 5.2b. Note that if a

relatively large amount of energy can be transferred to the electron, it may be sufficiently

excited to jump the gap into the next band where conduction can occur easily. Here the

insulator breaks down.

In semiconductors, only a small energy gab (forbidden region) separates the two bands, as

illustrated by Figure 5.2c. Small amounts of energy in the form of heat, light, or an electric

field may raise the energy of the electrons at the top of the filled band and provide the basis

for conduction. These materials are insulators which display many of the properties of

conductors and are called semiconductors.
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Conductivity and superconductors
If a free electron, (Q = −e), moves under the influence of an electric field E, the

electron will experience a force F

𝐹 = Q 𝐸 = −e 𝐸

In free space, the electron would accelerate and continuously increase its velocity

(and energy); In the crystalline material, the progress of the electron is impeded by

continual collisions with the thermally excited crystalline lattice structure, and a

constant average velocity is soon attained. This velocity vd is termed the drift

velocity,
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Eed v
where 𝜇𝑒 is the mobility of an electron and is positive by definition. Note that the

electron velocity is in a direction opposite to the direction of E. the unit of

mobility is m2/V.s

(6)



Conductivity and superconductors
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Substituting (6) into Eq. (3), we obtain

(7)

where 𝜌𝑒 is the free-electron charge density, a negative value. The total charge

density 𝜌𝑣 is zero because equal positive and negative charges are present in the

neutral material.

The relationship between J and E for a metallic conductor, however, is also

specified by the conductivity σ (sigma),

(8)

We call this equation the point form of Ohm’s law. The unit of σ is Siemens per 

meter (S/m) or mho per meter (℧/m)



Conductivity and superconductors
If we now combine Equations (7) and (8), conductivity may be expressed in 
terms of the charge density and the electron mobility as
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(9)

From the definition of mobility (6), it is now satisfying to note that a higher

temperature infers a greater crystalline lattice vibration, more impeded electron

progress for a given electric field strength, lower drift velocity, lower mobility,

lower conductivity from Eq. (9), and higher resistivity as stated.



Conductivity and superconductors
Superconductivity

The resistivity, which is the reciprocal of the conductivity, varies almost linearly

with temperature in the region of room temperature, and for aluminum, copper,

and silver it increases about 0.4 percent for a 1-K rise in temperature. For several

metals the resistivity drops abruptly to zero at a temperature of a few kelvin; this

property is termed superconductivity.

Copper and silver are not superconductors, although aluminum is (for

temperatures below 1.14 K).
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Ohm’s law
The application of Ohm’s law in point form to a macroscopic (visible to the naked 

eye) region leads to a more familiar form. Initially, assume that J and E are 

uniform, as they are in the cylindrical region shown in Figure 5.3. 
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(10)



Ohm’s law
Because they are uniform, and
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(11)

or

Thus



Ohm’s law
The ratio of the potential difference between the two ends of the cylinder to the current

entering the more positive end, however, is recognized from elementary circuit theory as

the resistance of the cylinder, and therefore

11/15/2017 28

(12)

(13)

• Equation (12) is known as Ohm’s law, and Eq. (13) enables us to compute the

resistance R, measured in ohms (Ω), of conductors which possess uniform fields.

• when the fields are non-uniform,

(14)

• The line integral is taken between two equipotential surfaces in the conductor, and the 

surface integral is evaluated over the more positive of these two equipotentials.



Ohm’s law
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Ohm’s law
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Conductor Properties and Boundary Conditions
There are important properties for conductors:

1- 𝜌𝑣 = 0, there is no charge inside the conductor.

2- 𝐸inside= 0, there is no field inside the conductor.

3- 𝐸t= 0, there is no tangential field component to the conductor surface.

4- surface charges may be exist.

5- 𝐸𝑛 =  𝜌s 𝜀 may be exist to the conductor surface.

6- the conductor surface is an equipotential surface.
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Conductor Properties and Boundary Conditions
Why 𝝆𝒗 = 0 inside the conductor?

Suppose, for the sake of argument, that there suddenly appear a number of

electrons in the interior of a conductor. The electric fields set up by these

electrons are not counteracted by any positive charges, and the electrons

therefore begin to accelerate away from each other. This continues until the

electrons reach the surface of the conductor.

Hence the final result within a conductor is zero charge density, and a surface

charge density resides on the exterior surface.
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Conductor Properties and Boundary Conditions
Why 𝑬𝒊𝒏𝒔𝒊𝒅𝒆= 0 ?

Applying Gauss’s law inside a conductor

 𝐷. 𝑑𝑠 = 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 =  𝜌𝑣𝑑𝑣

∵ 𝜌𝑣 inside a conductor = 0

∴  𝐷. 𝑑𝑠 = 0  ∴ 𝐷𝑖𝑛𝑠𝑖𝑑𝑒 = 0 and 𝐸𝑖𝑛𝑠𝑖𝑑𝑒 = 0
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Conductor Properties and Boundary Conditions
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Conductor Properties and Boundary Conditions
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Remembering that E = 0 within the conductor,

around the small closed path abcda. The integral must be broken up into four parts

Why 𝑬𝒕= 0 ?

∵ E-field is conservative 

∴ 𝐸t∆𝑤 = 0  ∴ 𝐸t = 0

Conductor

Free space



Conductor Properties and Boundary Conditions
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Why 𝑫𝒏 = 𝝆𝒔

choosing a small cylinder as the gaussian surface. Let 

the height be ∆ℎ and the area of the top and bottom 

faces be ∆𝑆. Again, we let ∆ℎ approach zero.

Using Gauss’s law,

we integrate over the three distinct surfaces

Since 𝐸𝑖𝑛𝑠𝑖𝑑𝑒= 0 and 𝐸𝑡= 0  ∫bottom = 0 and ∫sides= 0 

∴ 𝐷𝑛 ∆𝑆 = 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜌𝑆∆𝑆 ∴ 𝐷𝑛= 𝜌𝑆



Conductor Properties and Boundary Conditions
To summarize the principles which apply to conductors in electrostatic fields, we 

may state that

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere 

directed normal to that surface.

3. The conductor surface is an equipotential surface.
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Cross-sectional view of the line charge.

Lengths proportional to the magnitudes of

E and pointing in the direction of E

Streamlines and Sketches of Fields

For the present, let us be content to show

only the direction of E by drawing

continuous lines, which are everywhere

tangent to E, from the charge.

These lines are usually called streamlines, although other terms such as flux lines and 

direction lines are also used. 
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Streamlines and Sketches of Fields

Several streamlines are shown in Figure, and

the Ex and Ey components are indicated at a

general point. It is apparent from the geometry

that

If we attempted to sketch the field of the point

charge, the variation of the field into and away

from the page would cause essentially

difficulties; for this reason sketching is usually

limited to two-dimensional fields.

A knowledge of the functional form of Ex and Ey (and the ability to solve the resultant

differential equation) will enable us to obtain the equations of the streamlines.
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Streamlines and Sketches of Fields

Consider the field about the line charge,

As an illustration of this method, consider the field of the uniform line charge with 

𝜌𝐿 = 2𝜋𝜖0,

If we want to find the equation of one particular streamline, say one passing through 

P(-2, 7, 10), we merely substitute the coordinates of that point into our equation and 

evaluate C.

Thus we form the differential equation
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Streamlines and Sketches of Fields
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Because the conductor is an equipotential surface, the potential at the entire

surface must be 300 V. The equation representing the locus of all points having a

potential of 300 V is

or



Streamlines and Sketches of Fields
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Next, we find E by the gradient operation,

The field is directed downward and to the left at P; 

it is normal to the equipotential surface. Therefore,

Thus, the surface charge density at P is



Streamlines and Sketches of Fields
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Finally, let us determine the equation of the streamline 

passing through P.

The line (or surface) through P is obtained when C2

= (2)(−1) = −2. Thus, the streamline is the trace of



The Electric Dipole
The dipole fields that we develop in this section are quite important because they

form the basis for the behavior of dielectric materials in electric fields, as well as

justifying the use of images theory.

An electric dipole, or simply a dipole, is the name given to two point charges of

equal magnitude and opposite sign, separated by a distance that is small

compared to the distance to the point P at which we want to know the electric and

potential fields.
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Dipole moment - a measure of the strength of electric dipole. It is a vector 

quantity represented by 𝑃.

Magnitude of dipole moment - product of the magnitude of either charge and the 

separation between them.

P = q (2a)

SI unit – C m

Direction of dipole moment – it points from negative towards positive charge

The Electric Dipole
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The Electric Dipole

11/15/2017 46

Figure 4.8 (a) The geometry of the problem of an electric dipole. The dipole moment p = Qd is 
in the az direction. (b) For a distant point P, R1 is essentially parallel to R2, and we find that R2 -
R1 = d cosθ.



The Electric Dipole
Using the superposition to get the potential of point P due to the two charges 
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• For a distant point, 𝑅2 ≈ 𝑅1, 𝑅2 − 𝑅1 = 𝑑 cos 𝜃

• The final result is then

• Using the gradient relationship in spherical coordinates,



The method of images
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One important characteristic of the dipole field is the infinite plane at zero

potential that exists midway between the two charges. Such a plane may be

represented by a vanishingly thin conducting plane that is infinite in extent.

The conductor is an equipotential surface at a potential V = 0,



The method of images
Image theory states that a charge Q above a grounded perfectly 
conducting plane is equal to Q and its image –Q with ground plane 
removed.
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The method of images
Use image theory to determine E at an arbitrary point P (x, y, z) in 
the region z > 0 due to a charge Q in free space at a distance d above 
a grounded conducting plane.
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The method of images
Charge Q is at (0, 0, d) and its image −Q is at (0,0,−d) in Cartesian 
coordinates. Using Coulomb’s law, E at point P(x,y,z) due to two point 
charges:

11/15/2017 51

 

  
 

   





































 


2/3222

2/3222

0

3

2

2

3

1

1

0
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The method of images
find the surface charge density at P(2, 5, 0) on the conducting plane z = 0 if there 
is a line charge of 30 nC/m located at x = 0, z = 3, as shown in Figure
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(a) A line charge above a conducting plane. (b) The conductor is removed, and the image 
of the line charge is added.



The method of images
We remove the plane and install an image line charge of -30 nC/m at x = 0, z = -
3. The field at P may now be obtained by superposition of the known fields of the 
line charges. 

The radial vector from the positive line charge to P is R+ = 2ax − 3az , while R− = 
2ax + 3az .
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Adding these results, we have

𝐷 = 𝜖0𝐸 = -2.20az nC/m2, and because this is directed toward the conducting plane, 

𝜌𝑆is negative and has a value of -2.20 nC/m2 at P.



The method of images
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